## **TELEFUNKEN**

AZ 11

Zweiweggleichrichter

| Heizspannung | $U_f$          | 4   | ٧ |
|--------------|----------------|-----|---|
| Heizstrom    | l <sub>f</sub> | 1,1 | A |

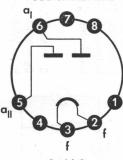
Betriebswerte: siehe Kurven

## Grenzwerte:

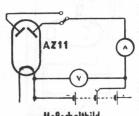
| Bei einer<br>Transformatorspannung<br>U <sub>Tr</sub> (V <sub>eff</sub> ) | beträgt der maximal<br>entnehmbare Gleichstrom<br>I (mA) |
|---------------------------------------------------------------------------|----------------------------------------------------------|
| 2 x 500                                                                   | 70                                                       |
| 2 x 400                                                                   | 90                                                       |
| 2 x 300 und weniger                                                       | 120                                                      |

Für das Produkt aus Transformatorspannung U<sub>Tr</sub> und Gleichstrom I... ist im Bereich von 300 bis 500 V die Bedingung zulässig:

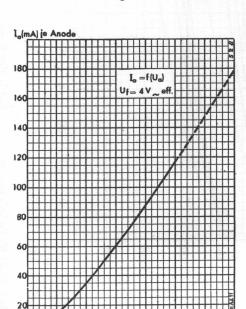
$$2 \times U_{Tr} (V_{eff}) \times I_{mm} (mA) \leq 72000$$


Ladekondensator

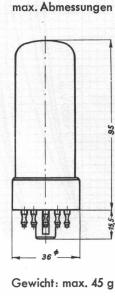
 $C_L$ 

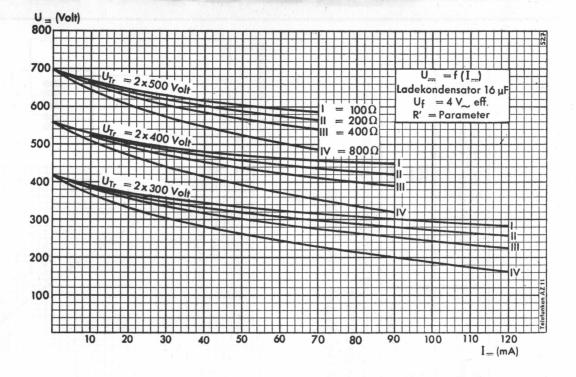

60

μF

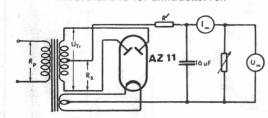

Sockelschaltbild




Stahl 8




für Innenwiderstandskurve




MeBschaltbild









Die in den Kurven angegebene Wechselspannung  $U_{Tr}$  ist die Leerlaufspannung des Transformators. Der Parameter R stellt den Ersatzwiderstand des Transformators, d. h. den halben ohmschen Widerstand der Sekundärwicklung + den auf die Sekundärseite transformierten ohmschen Widerstand der Primärwicklung dar.

$$R' = R_s + \ddot{\mathbf{u}}^2 \cdot R_p$$

ü = Verhältnis der halben Sekundärwicklung zur Primärwicklung.

R<sub>p</sub> = Widerstand der Primärwicklung.

R<sub>s</sub> = Widerstand der halben Sekundärwicklung.